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Abstract 

Based on the exploitations of properties of the Killing forms of semi-simple Lie algebras, 
we set out in a readily programmable form, the structural analysis and the Iwasawa-type 
decompositions of semi-simple Lie algebras. As an example, the case of SO(3,1) and its 
covering group SL(2, C) is worked out in some detail. 

1. Introduction 

With the constantly increasing involvement of  Lie group theoretical concepts 
a nd methods in theoretical physics, particularly high energy physics, it has 
become more and more important for high energy physicists to go out of  their 
way to gain some deeper understanding of  the large body of  mathematical 
information already available on abstract Lie algebras and Lie groups. In 
particular, one is often interested in the structure and representations of  semi- 
simple Lie algebras. 

One concept which has proved extremely useful in studying and character- 
ising the structure of  semi-simple Lie algebras is the Killing form of  a Lie 
algebra. This concept leads for example to a neat solution of  the problem of 
when a given group can be written as a product of  elements of  some of  its 
subgroups. It turns out that by exploiting the properties of  the Killing forms 
of  Lie algebras, this problem can be solved first at the Lie algebra level, and 
thence by exponentiation, at the Lie group level. 

In general, using the approach of Killing forms, one can set out the analysis 
of  the structure of  any semi-simple Lie algebra in a readily programmable form, 
with the result that the analysis of  the structure o f  higher dimensional Lie 
algebras can easily be delegated to the computer. An as illustration of  the 
procedure for such computations, we work out explicitly the structural para- 
meters o f  the Lie algebra of  S0(3,  1) and its covering group SL(2, 6-). 

© t 975 Plenum Publishing Corporation. No part of this publication may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, microfilming, recording, or otherwise, without written 
permission of the publisher. 

125 



126 F.N. NDILI, G. C. CHUKWUMAH AND P. N, OKEKE 

2. Killing Forms o f  S0(3 ,  1) 

Let us consider, for example, the general pseudo-orthogonal group 
SO(n - s, s), where s is the signature, and write down its Lie algebra which 
is given (Gourdin, 1967) by 

[Zij, Zkl]  = g jkZi t  -- g ikZj l  + g i IZ jk  -- g j lZ ik  (2.I) 

with Zi/ = -Z / i .  

We may next specialise in the case of S0(3, 1) for which we put 

g = ( + l , + l , + l , - 1 )  

and choose our generators as 

Z12, Z31, Z14, Z23, Z24, Z34 (2.2) 

The result is the following set of commutation relations: 

[Z12,Z31] = +Z23 ; 

[Z12,Z14 ] = - Z 2 4  

[Z12,Z23 ] = - Z 3 1  
[Z12, Z24] = +Z14 

[Z12, Z34] = 0 

[Zal,Z14] = +Z34 

[Z31,Z23 ] = +Z12 
[ Z a i , Z 2 4  ] = 0 

[Z31, Z34] = -Z14  

[Zi4, Z23 ] =0  

[Z14,Z24 ] = -I-Z12 

[Zt4, Z34] = - Z 3 t  
[Z23,Z24 ] = - Z 3 4  
[Z23, Z34] = +Z24 
[Z24,Z34] -- +Z23 

(i = 1,/" = 2, k = 3, l = 1 in equation (2.1)) 

(2.3) 

We may re-order these generators as follows: 

Xx =Z12; Xz =Z31; Xa =Z24 

X 4 =Z23; X5 =Z14; X 6 =Z34 
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Then we obtain the following set of  commutation relations and structure 
constants: 
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[Xl, X2] = +X4: C124 = + 1; C214 = - 1  

[Xl ,X3] = + X s :  C13 s = + l ;  C315 = - 1  

[Xt, X4] = - X 2 :  C142 = - 1  ; C412 = + 1 

[Xa, Xs] = -X3 :  Cls 3 = - 1 ;  Csl 3 = + 1 

[X1,X6] = 0 :  C16r=C61r=O; r = 1 , 2 . . . 6  

[Xa, X3] =0 :  C23r=Ca2r=O; r = 1 , 2 . . . 6  

[X> X4] = +Xl :  C241 = + I; C421 = - t  

[Xz,-J~5] = +X6: C256 = + 1 ; C526 = - 1  

[X2, X6] = - X s  : C26s = - 1 ; C62s = + 1 

[X3, X4 ] = +X6: C346 = -I- I; C436 = - 1  

[X3,Xs] = - X I :  Casl = - 1 ;  Cs31 = + I 

[X3, X6] = +X4: C364 = + 1; C634 = - 1  

IX4, X5] = 0 :  C45r=Cs4r=O; r = 1 , 2 . . . 6  

[X4, X6] = +X3: C463 = + l; C643 = - 1  

[Xs ,  X 6 ]  = - X 2 :  Cs 62 = - 1 ; C652 = + 1 (2.4) 

The explicit 4 x 4 matrix representations of these generators may also be 
written down. It can be shown quite generally (Gourdin, 1967) that the Lie 
algebra of the general pseudo-orthogonal group SO(n - s, s), is isomorphic to 
the matrix sub-algebra o fM(n ,  R), composed of  n x n matrices of the form: 

where Z a is skew symmetric of  order (n - s), Z3 is skew symmetric of  order 
s, Z2 is arbitrary (n - s) x s matrix, and Z2 r is the transpose of  Z2. 

Based on this, we can choose the following representations for the 
generators X / o f  SO(3, 1), the choice being made such that the commutation 
relations in equation (2.4) are preserved. 

(i-l o i) (i o X l  = 0 0 . X2  -- 0 - 1 
0 0 1 0 
0 0 0 0 O/ 

0 0 ; X4 = 0 0 
X 3 =  0 0 0 0 

0 0 0 0 
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( ooi) (i °°I) 0 0 ; X6  = 0 0 
X s =  0 0 0 0 

0 1 0 0 1 

(2.5) 

One checks that these matrices are indeed consistent with the commutation 
relations in equation (2.4). 

Having now obtained the structure constants, we can compute the adjoint 
matrices associated with the generators. 

In general we have 

A d x ,  = (Ci)ig 

which is an n x n matrix for an algebra of order n. Thus for S0(3 ,  1) we have 

A d x i  = 
C/ll G12 (7/13 , . ,  Cil6 t 
C/21 (7/22 . . . . . .  
Ci61 C/62 . . . . . .  G66/ 

so that from the values of Cijk given in equation (2.4) we obtain the following 
results: 

Adx~ = 

JO 0 O00i) i 0 0 1 0 
0 0 0 1 0 

- 1  0 0 0 
0 - 1  0 0 

\ 0  0 0 0 0 

l; oo-loi) ~ o o o o o  ° 
Adx~ = 0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 - 1  

A%= 
liooo .... ii) ~ o 0 o  oo 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 1 0 
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0 0 0 0 0 
0 0 0 0 - 
0 0 0 0 
0 0 0 0 
0 1 0 0 
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i oloo i) 0 o 0 0 0  2 
0 0 0 0 
0 0 0 0 
0 0 0 0 

- 1  0 0 0 

/;0 0 00i)  0001o 
0 0 - 1  0 
0 - 1  0 0 
1 0 0 0 
0 0 0 0 

The Killing forms may next be deduced, defined generally by 

B(Xi, Xi) = tr (Adxi Ad~) 

For S0(3, 1) we get the results: 

B(Xi, Xi) = - 4  for i = 1,2, 4 

= + 4  f o r i = 3 ,  5,6 

(2.6) 

(2.7) 

3. Decompositions of S0(3, 1) 

Using now these explicit values of the Killing forms, as well as a number 
of theorems (Hennann, 1966; Helgason, 1962; Strom, 1971 ; Pontryagin, 
1966; Nagel, 1969) dealing with the properties of Killing forms, the computa- 
tion of the structural parameters of S0(3, 1) and its Iwasawa decomposition, 
proceeds as follows. 

We denote the set of all generators with negative Killing forms (or Killing 
norm) by LK, while the remaining generators with positive Killing forms we 
denote by P. Thus for S0(3, 1)we obtain: 

L K = {Xl,  X2, X4} 

P-= {X3, Xs ,X6)  (3.1) 

The generators X1, X2, X4 with the negative-definite Killing forms, we call 
compact generators (Pontryagin, 1966), corresponding to the known fact 
that the subset LK forms a compact subatgebra of L. It is in fact the maximal 
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compact subalgebra of L. To find what this compact algebra is, we write down 
the commutation relations of the elements of L f  and try to establish iso- 
morphsim with some known compact algebra (of the same order). 

Thus from equations (3.1) and (4.t) we get: 

[xt,xd =+x4 
[Xl ,  X4] = - X  2 

[Xz, X41 = +X1 (3.2) 

By using equation (2.1) and writing down directly, the Lie algebra of S0(3, R), 
namely: 

[Z23 , /31 ]  = - Z 1 2  

[Z31,Z121 = - Z 2 3  

[Z12, Z231 = -Za~ 

we establish the one-one correspondence: 

Z12 "~X1; Z31 <+X2, Z23 <+X4 (3.3) 

so that LK = sO(3, R). 
Next we use equations (2.4) and (3.2) to check the following properties of 

the subsets LK and P. We have 

[LK,PI c P  
[P,P] C LK 

For example: 

[X1, Xa] = +X5 EP 

[X 1, X6] = 0 E P 

[X> X6] = - X s  ~ P 

[Xa, Xs] = - X  1 ELK 

[Xs, X6] = -X2 ELK 

(3.4) 

These are merely consistency checks. Finally, with the computed values of the 
Killing forms we check also that 

B(P, LK)=B(LK, P)=O 

meaning that the subspace P is orthogonal to the subspace LK with respect to 
the Killing form. P is, however, not a subalgebra of L as seen from equation 
(3.4). 

Algebraically, these results imply that we can write 

sO(3, 1) = LK @ P 

= sO(3, R) ® e (3.s) 

This gives us first-stage decomposition of SO(3, 1). 
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4. Decomposition of P 

With a view to further decomposition of equation (3.5) the prescription 
is to scan through P, and pick out all those elements X which are mutually 
commuting. The set of such elements we denote by L A . The content of L A 

is obtained from equation (2.4). 
Thus for PE S0(3, 1) we have: 

[X3, Ys] = -Yl  

IX3, X6] -- +X4 

[X5, X6] = - X  2 (4. l) 

from which we see that no two generators commute in this case, so that we 
may arbitrarily choose: 

LA = X6 (4.2) 

In the general case, one denotes the number of elements of LA by L Thus: 

LA = {Hi), i=  1,2 . . . .  I 

Then we are required to set up eigenvalue equations for LA as follows: We 
look for the set of all elements X belonging to the original algebra L, which 
satisfy: 

[H, X] = a(H)X (4.3) 

where for a given H, a(H) is a real number, known as the eigenvatue of H, 
while the element X is the eigenfunction of// .  In general, there should be as 
many different eigenvalues as there are distinct eigenfunctions. Some eigen- 
values may however be degenerate. The number of different eigenfunctions 
X having the same eigenvalue a(H),  for a fixed H, we call the multiplicity or 
the degeneracy of the eigenvalue a(H). The set of all such degenerate eigen- 
functions we denote by L a. We need to compute these L ~ quantities in order 
to gain more information about the structure of the algebra L. We therefore 
proceed further as follows: 

5. Spectrum of Eigenvalues and Roots 

In general for the given algebra L, a spectrum of eigenvalues may exist, and 
not just one eigenvalue. The first step in finding the set o f L  ~ quantities, is to 
determine any eigenfunctions X which have eigenvalue zero. The set of such 
eigenfunctions we denote by L ° corresponding to a(H) = 0. 

In the case of SO(3, I)  we see from equations (4.3), (4.2) and (2.4) that 

L ° = ( X l , X 6 }  (5.1) 

The remaining non-zero eigenvalues are called roots, and are determined 
from equations (4.3), (4.2) and (2.4) as follows. 
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Having extracted L ° fromL, we take the remaining elements of L and 
write out their commutation relations with X 6 as follows: 

IX6, X2] = +X5 

IX6, X3] = -X4 

[X6, X4] = -X3 

[X6,X5] = +X 2 

We see that none of  these equations is o f  the form (4.3), so that X >  X3, X4 
and Xs are not eigenfunctions of  X 6. We then try to form suitable linear com- 
binations which will be eigenfunctions o f X  6 (or in general of  the Hi operators). 
Forming the quantities: 

we see that 

Z -  = X2 - Xs 

Z + = X2 + Xs 

W- = X 3 + X  4 

W + = X3 - X4 (5.2) 

[X6, Z +] = Z + 

[X6, Z-] = - Z -  

[X6,W +] = W + 
IX6, [d]-] = - W -  (5.3) 

These are of  the form (4.3), so that the eigenfunctions o f X  6 are Z*, W + each 
with eigenvalue + t ; and Z - ,  W-, each with eigenvalue - 1 .  We can now write 

L(+I) = {Z +, W +} 

L (-1) = {Z-, W-} (5.4) 

The eigenvalue spectrum of SO(3, I) is then made up as follows: 

0 with multiplicity 2 

+ t with multiplicity 2 

- t  with multiplicity 2 (5.5) 

The roots of  S0(3,  1) are 

+ 1 (twice) 

- 1  (twice) 

We may write these four roots as 

~ = + I ;  --~ = - 1  

f l = + l ;  - ~ = - - 1  (5.6) 
We note that for the present case of  S0(3, 1) where L A consists of  just one 
operator X6, the roots are points on the real line. In the more general case 
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where L A contains l op~ators ,  each root ~ , / 3 , . . .  will be a vector in an l- 
dimensional dual space L A . These roots are conventionally normalised by 
requiring that ¢t.e = [3.~ = . . .  = 1. The roots in (5.6) are therefore already 
normalised. 

6. Normalisation of  the Roots 

In the general case, the normalisation o f  the roots is stated in terms of  the 
Killing forms of  L as follows: We go back to equation (4.3) and consider the 
following two cases: 

(i) H = Hi, where Hi is a basis vector in the/-dimensional Lie vector space 
LA. Then equation (4.3) can be rewritten in the form: 

[Hi, X] = a(Hi)X : s i X  (6.1) 

For i = 1,2 . . . .  l, and for a fixed eigenfunction X, we then get the quantities 

which may be considered as a vector a existing in a separate/-dimensional 
space denoted by LA, the dual space to the space LA containing the operators 
Hi. 

Now we may interpret equation (6A) as follows. We can say that to every 
eigenvatue (or root) vector e in space LA, there is associated with it, a vector 
Ha 1 in space LA, where He I has to be such that the Killing projection of  Ha 1 
on the basis vector Hi gives the number a~.. Thus given the set of  numbers, 
(oq} which are the root components in space LA, we require to find that 
unique vector Hc~ 1 in space LA, such that 

o r  

B(Hi, Ha l) = Cq 

tr (AdH; AdG1) = ~, (6.2) 

With this specification, the required vector can easily be found by means of  
equations (2.5) and (2.7). 

(ii) Next suppose we take the operator H in equation (4.3) to be an 
arbitrary vector operator H in L A . We may still took for the eigenvalue of  
such a vector operator. Denoting this eigenvalue by the real number a(H), 
one can show that a(H) is the Killing form of  the two vectors Ha 1 and H. 
Thus let us write the eigenvalue equation: 

[H, X] = c¢(H)X (6.3) 

and expand H in the form: 

l 

i = 1  
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Then equation (6.3) becomes: 

X i [Hi, X] : a(H)X 
i=1 

or using equation (6.1) we get: 

l 

E Xi°~iX = a(H)X 
i=l 

whence 
l 

oz(U) = E ~,i°zi = rl. H 
i = l  

(6.4) 

(6.5) 

But from (6.2) and (6.4) we can also write 

1 
c~(H) : Z XiB(gi ,  Ha 1) = B(H, nc~ 1) 

i=l 

which may be compared with equation (6.5). 
Alternatively we argue as follows. We write 

B(tt i ,  t /j)  = g ,  

l 

B(Hi, H) = ~ X]B(Hi, H]) 
1=I 

l 
: Y xmj  

j=l 
l 

B(Hi ,  H l )  = ~ X/lgi] 
]=1 

o r  

Then 

1 
B(Hi  ' Ha l) : ~ Xjlgij = %, say 

i=l 

t 
B(H,H~ 1) = ~ ~iB(Hi, H~ 1) 

i=1 

(6.6) 

l 
= y ~iOLi 

i=l 

= a (H) 

from equation (6.5). Then a(H) = B(H, H~ 1) as before. 
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This proves that if X is an eigenfunction of the individual basis operators 
Hi, with eigenvalue c~i, then X is also an eigenfunction of any vector operator 
H, and has eigenvalue c~(H) which is the scalar product of  ~ and H in a joint 
/-dimensional space. Now the eigenvalue c~(H) of  the vector operator It is 
always normalized to 2. That is, 

{~(H) =B(H, H~ 1) = 2 

Given therefore the adjoint matrix for Hc~ 1 and the eigenvalue 2, we can look 
for the operator H = H a say, which is such that 

B(H,~, He I) = 2 (6.7) 

This operator H a in space L A w e  associate with the eigenvalue c~(Hc0 = 2. 
Summarising, we note that if the root vectors ~ and the operators H were 

to be considered as existing in the same/-dimensional space, then c~i, which is 
the eigenvalue of Hi, is to be interpreted as the projection of  some vector Hc] 
on the basis vector Hi. This vector Hc~ 1 will be in the same direction as ce and 
is in fact identical with it. 

On the other hand, the eigenvalue ~(H) of  some arbitrary vector operator 
H is to be interpreted as the Killing form B(H, Hc~l), or the scalar product of  
H with the vector He I. Once we know the set of  numbers e = (C~l, c~ 2 . . .  c~) 
we can determine Ha 1 uniquely. For another root 13 = (31, 32 • • • 3/), we get 
another uniquely determined vector H~ 1. There will in general be as many 
different such vectors Hc~ 1, H~ 1, H~ 1 . . .  as there are distinct roots, l f X  is the 
eigenvector with the set of  eigenvalues e = (c~1, ~2 • - • cq), then the eigenvalue 
c~(H) of  an arbitrary operator H for the same eigenvector X, will be given by 
the Killing form of H e with the previously determined unique vector Hc~ 1. 
Among the set of  all arbitrary vectors, we can find only one to be denoted 
by Hc~ which is such that c~(H) = ~(Hc0 = B(HeHc~ 1) = 2. 

Next, taking another eigenvector Y, with eigenvalues ~ = (31,/32.. • 3l) for 
the same set of  basis vectors Hi, we get that the eigenvatue of  some arbitrary 
operator H for the same eigenvector Y, is given by: 

~(H) = B(H, U~ ~) 

When this arbitrary vector H is selected such that the number 3(H) = 2, we 
re-name the operator H 3 and write 

~(n)  = ;~(n~) = e ( n ~ ,  n~ l) = 2 (6.8) 

What finally emerges in this general case, is that given the roots e, t3, y . . .  we 
have first to compute the unique vectors Hc~ l, Hi31 . . .  from equation (6.2). 
Next we compute the vectors H~., H a from equation (6.7). We then claim that 
working subsequently with only these vectors, is equivalent to working with 
normalised roots. The normalisation in fact implies that once we have found 
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the Ha 1, H~ 1 . . .  operators from equation (6.2), we can deduce the operators 
Ha, H ¢ . . .  from the formula: 

2H~ 1 
Ha - B(Hal, H 1 )  (6.9) 

This requires that having found the H~ 1 operators, we compute their Killing 
forms and scale these operators H~ I to the operators Ha as in equation (6.9). 

For the roots themselves, this normalisation is equivalent to the conven- 
tional one of normalisation to unity. Thus 

~ .~  = 13./3 = . . . =  1 ( 6 . 1 0 )  

as stated before. 
Returning to the specific case of SO(3, 1)we see that the roots are already 

normatised. As a check, we compute the operators Ha 1, H~ 1, H a and H~, 
associated with these normalised roots. Since the roots are one-component 
quantities, we have 

~ =c~1=+1 

t3=& =+1 

Also 

H / = H  1 = X  6 

Then from equation (6.2) we require 

B ( X 6 ,  Ha l) = B(X6,HI+I)  = + 1 

But from the earlier equation (2.7) we have B ( X 6 ,  X6) = + 4. Hence we may 
take H+1I = ¼X 6. Then 

B ( H ~  1, no~ 1) = hB(S6, S6) = ¼ 

and 

This leads to the result: 

Similarly 

so that 

2Ha 1 
H a - B(H,  1, Ha l) - 2 X  6 

~(na) = R(Ha, r~ ~) 
= B(2X6, ¼X6) = ½B(X6, X6) 

= 2 as required (6.11) 

B(X 6, H~ 1) = + 1 

H~31 = ¼X 6 
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and 

with 

Also we have: 

so that 

Then 

H~ = 2X 6 

a(H~) = B(H¢~, Ha l) = B(2X6, ~) (6)  

= ½B(.~6,  X 6 )  = 2 

j3(nc~) = B (Hc~, H~ ~) 

= B(2X6, l x 6 )  = 2 

2B(Ht31' Hal)= 2 
n ~  =a(H~)=  B(Ha ,  H I) 

2B(Hal' H~I) = 2 
n& =/3(Hc~) = B(H(xt ' n i l  ) 

(6.12) 

na¢n~ = 1 = cos2~(G~)  or  cos  ~b = + 1 
4 

That is 4) = 0 or 180 °. 
This agrees with the fact that LA is one-dimensional in this case of SO(3, 1), 

so that the two roots cx and 13 are along the same real line. (The concept of 
roots as discussed here and the resulting angle between root vectors, must not 
be confused with root vector analysis (Pontryagin, 1966; Rowlatt, 1966; 
Behrends et al., 1962) based on the maximal abelian algebra L ° of  equation 
(5.1). Here our root vector analysis is based on LA. We shall discuss the con- 
nection between the two approaches elsewhere.) 

Returning to the structural and decomposition problem, we find that if we 
denote by A the set of all roots of the algebra L, as computed by the above 
prescription, then we can write: 

L = L ° ®  ~ L ~ 

Thus for sO(3, 1) we have 

sO(3, 1) = L ° ® L +1 @ L -1 (6.13) 

where L °, L +1 and L -1 are given by equations (5.1) and (5.4). 

7. Hyperplanes of L 

Also given now the roots we can deduce information about the algebraic 
structure of the subset P given in equations (3.1) and (3.5). For this purpose 
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one introduces the notion o f  positive and negative roots by first defining a set 
of  hyperplanes in the space LA. Generally this is done as follows: 

For any given root ~, we consider all those vectors H in space LA which 
are such that a (H)  = 0. Denoting the set of  such vectors by Pa, we have that 

P~ = ~HCLA : 0~(]-]) = O) 

We consider alt such vectors H as lying on a hyperplane denoted by Pc~. It is 
called the hyperplane associated with the root vector ~. Since 

~ ( H )  = ~ .  H 

it follows that the hyperplane P~ is orthogonal to the root vector ~. That is 
P~ is orthogonat to Ha  or to Ha I in the space LA. These hyperplanes are 
found in general by simply looking at the eigenvalue equation such as 
equation (5.3). In this way, one finds the hyperplanes for each of  the other 
root vectors 13, y . . . .  These hyperplanes P~, P~ . . .  are orthogonal, respectively, 
to the root vectors 13, y . . . .  

In the case of  SO(3, 1) we expect to have two hyperplanes Pa = P(+I) and 
P~ = P(+~), corresponding to our two roots. Since L A consists of  only one 
operator X6, the hyperplanes in this case are simply points on the real line. 
The two points are the origin. 

8. Weft Group and Weft Chambers 

Having obtained the hyperplanes, one computes next the set of their 
associated Weyl chambers and Weyl reflection operators. Abstractly, these 
concepts are introduced as follows: For each root ~ we are required to 
introduce an operator, S~, with the following properties: 

(i) Acting on an arbitrary vector I t  in LA we should have: 

S~H = H - ~ ( H ) n a  

(ii) Also 

SaPs = Pa 

(iii) (Sa) 2 = I 

(iv) B(H,  H) = B(SaH, Sai l )  
(v) B(H,  Ha) = 0 for any H lying wholly on Pa 
(v0 s~u~ =-H~ 

The computation of such Weyl operators S~ is quite straightforward. Thus 
consider the case of  SO(3, 1). 

Since L A is one-dimensional, the results are rather trivial, but we can still 
write: 

S~ = S+1; S~ = S+1 

S+X6 = +X6- .  2X6 = - X 6  

(3+)2X6 = "l-X6, etc .  
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We get that for S0(3, 1) all such operators consist of S+, S_ and I. They 
reduce to a finite group of order 3, known as the Weyl group for S0(3, 1). 
Here the Weyl group acts in a one-dimensional space spanned by X6, so that 
we can write: 

Weyl Group for S0(3, 1) = (+1, --I ,  1) = (w, w -1, e) 

Next we consider the Weyl chambers defined as the space between any 
two hyperplanes in the vector space L A . These chambers can be computed 
from the information already available on the hyperplanes. In the case of 
S0(3, 1) the Weyl chambers consist of the line segments: 

(0, +~) and ( - ~ ,  0) (8.1) 

We may denote these chambers by C+ and C_ respectively. Their relation to 
the Weyl group is that the elements of  the Weyl group have the general 
property that, acting on roots in one Weyl chamber, they carry them across 
some hyperplane into another Weyl chamber. The roots in the chamber C+ 
are called positive roots while the roots in the chamber C_ are the negative 
roots. We note, however, that the choice of  which roots are positive and which 
are negative is largely arbitrary. This is particularly obvious when we consider 
the more general case. However for SO(3, 1) we shall put 

c+ = ( <  t3) = (+1,  +1) 

C_ = (-c~, - ~ )  = ( - 1 ,  --1) (8.2) 

Then from equation (5.3), one has that the eigenfunctions of  the positive 
roots are Z + and 14I +. One verifies that Z + and W + form a nilpotent abelian 
subalgebra of SO(3, 1), which we may denote by L~v. Similarly Z -  and W- 
form a nilpotent abetian subalgebra L N. 

9. The Iwasawa Decomposition 

Given now the above detailed information about the structure of the Lie 
algebra L, one can complete the problem of decomposition of the algebra by 
appealing to the well-known theorem (Hermann, 1966; Helgason, 1962), 
according to which the Lie algebra L can uniquely be written in the form: 

L =L K @ L A @ L[v (9.1) 

For sO(3, 1) this means: 

s0(3, 1) = s0(3, R) @ X6 @ L;, (9.2) 

This may be carried over to the group ievel, leading to the Iwasawa factoris- 
ation of the connected analytic group G whose algebra is L. In general if K, A 
and N + stand for the connected analytic subgroups of G which correspond 
to the Lie algebras LK, L A and L/v respectively, the Iwasawa factorisation of 
G is 

G = K. A.  N + (9 .3 )  
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That is, every element g E G can be written in general asg = kan +, the order 
of the factors being also immaterial. For the case of S0(3, t)  discussed here, 
these analytic subgroups are easily calculated as follows: Let a stand for an 
arbitrary element of the group A, while n + is the arbitrary element of the 
group L~j. Then we have: 

a = exp ( t X 6 ) = I  + tX 6 + (12X])2 + 

where t is an arbitrary real parameter with _oo ~< t < +oo. Substituting the 
matrix representation for X 6 from equation (2.5), we get that 

(i ° °  t 
1 o o 

a =  0 cosht  sinht 
0 sinht c o s h t /  

(9.4) 

Next we have that 

n+= exp (sZ + +rW +) 

where r and s are also real parameters with _oo <~ r, s ~< +oo. 
From equations (2.5) and (5.2) we get that 

(9.5) 

Z+ = 0 - 1  . W+= 
1 0 ' 

1 0 . 
° 00 0 00° it (9.6) 

Then expanding equation (9.5), and substituting equation (9.6), we obtain 
that 

n + =  
1 - s  s 
s 1 - ½ ( r  2 + s  2) ½(r 2 + s  2) 
s -½(r 2 +s 2) 1 +½(r 2+s z) 

(9.7) 

Finally one evaluates an arbitrary element of the maximal compact sub- 
group K. In the present case of SO(3, 1), K is the rotation group S0(3, R), 
whose arbitrary element, in the Euler form, is very well known (Edmonds, 
1957) and need not be written down here. In general, one can deduce this 
arbitrary element k @ S0(3, R) directly from our procedure by writing 

k = exp (0 iX1 + 0 2X2 + ~bX4) (9.8) 

where 01, 02, and ¢ are real bounded parameters, with 0 ~< ~ ~< zr; 0 ~< 01, 
02 ~< 2zr. Expanding equation (9.8), and substituting our explicit representa- 
tion given in equation (2.5) we obtain the required form of k. Taking the 
product of the matrix (9.8) with the matrices in equations (9.4) and (9.7), 
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we finally get an arbitrary element of  SO(3, 1) in parameterised Iwasawa 
form. 

Other types of decomposition of SO(3, 1), as discussed for example by 
Naimark (1964), can be deduced by the procedure followed here. In parti- 
cular, we can also decompose an arbitrary element of SO(3, 1) in the form 

g = k a k  1 

where k, k 1 are some two elements of S 0 ( 3 ,  R ) ,  while a = a(t) E A.  
The results for SL  (2, C) are in homomorphic correspondence with those 

of S 0 ( 3 ,  1) and need not be discussed separately. One finds that for SL(2 ,  g)  
the Iwasawa decomposition at the algebraic level is: 

s l (2 ,  c) = su(2) @ Y 6 @ L~V 
while at the group level we have : 

+ 
g = uan 

e -~t  

and . . . .  ~< t, r, s, ~< +~' as before, and where tl = (s - Jr) = arbitrary complex 
number. Detailed discussions of this specific case of Sl (2 ,  C) are available in 
several places (Naimark, 1964; Ruhl, t970; Gelfand et  aL, 1963). 

10. Conclusion 

We see how by exploiting various theorems dealing with the properties of 
Killing forms of Lie algebras one can reduce the problem of analysing the 
structure of semi-simple Lie algebras and obtaining their factorisations to a 
series of prescriptions, all of which are amenable to straightforward compu- 
tations. The parameters which contain the most important information about 
the structure of a semi-simple Lie algebra may be singled out as follows: 

(a) The structure constants. 
(b) The Killing forms of the generators. 
(c) The eigenvalue spectrum and the eigenfunctions. 
(d) The hyperplanes, the Weyl chambers and the Weyl group. 

Given these parameters, the structure and factorisation of any semi-simple Lie 
algebra can be deduced. In order to construct representations of the algebras 
and the groups, one also needs these structural parameters which are therefore 



142 F.N. NDILI, G. C. CHUKWUMAH AND P. N. OKEKE 

of great importance. Where the group G becomes a physical symmetry group, 
the structural parameters can acquire some physical meaning. 

Elsewhere we shall give further results on the structural parameters of 
other physically interesting Lie algebras. Applications of the results to specific 
physical problems will also be considered. 
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